CV in PDF

Education

University of California, Los Angeles (UCLA)

Master of Science in Biostatistics πŸ“Š
September 2023 – Present

  • GPA: 4.00/4.00 | Transcript
  • Advisor: Dr. Matteo Pellegrini
  • Honors:
    • Fielding School of Public Health Dean’s Leadership Grant (2023–2025)
    • Warren Alpert Computational Biology and AI Network Fellow (2024–2025)
    • Steve Wallace Policy Fellowship (2024)
    • APEx Funding, UCLA Human Genetics (2024)

Southwest University

Bachelor of Science in Biology 🧬
September 2018 – June 2022

  • GPA: 3.84/4.00 (Rank: 2/65) | Transcript
  • Outstanding Graduate
  • Thesis: Analytic Hierarchy Process for Invasive Plant Management
  • Honors:
    • International Research Award (2021)
    • Academic Excellence Scholarships (Second- and Third-Class, 2019, 2020, 2021)
    • Outstanding Intern (2022)

Skills

  • Computational & Statistical
    • Languages & Tools: R (tidyverse, ggplot2, glmnet, RShiny), Python (NumPy, Pandas, Biopython, Scikit-learn, Pybedtools, Matplotlib), MATLAB, SAS, STATA, SQL, HTML/CSS/JavaScript, LaTeX
    • Platforms: Linux scripting, Git/GitHub, Hoffman2 cluster, Docker, Cloud Platforms (GCP, AWS, Azure, OCI)
    • Data Analysis & Modeling: Machine learning, Bayesian inference, deep learning (Keras, TensorFlow, PyTorch), simulation, linear models, optimization, graph theory
    • High-Performance Computing (HPC): Workflow orchestration, parallelized analysis, cluster-based computations
  • Bioinformatics
    • Data Analysis: GWAS, EWAS, eQTL analysis, gene enrichment analysis, polygenic risk scores, Mendelian randomization, Gene Ontology analysis, multi-omics integration, genome annotation, single-cell data analysis (scRNA-seq, scDNA-seq)
    • Tools: BLAST, InterProScan, PSIPRED, AlphaFold, ChimeraX, UCSC Genome Browser, Ensembl, Galaxy, Bioconductor, BEDTools, STAR, DESeq2, Seurat, edgeR, Enrichr
  • Mathematical
    • Core Mathematics: Linear Algebra, Real Analysis, Probability and Statistics, Stochastic Process, Calculus, Partial Differential Equations, Discrete Mathematics, Infinite Theory
  • Laboratory
    • Molecular Biology: PCR, qPCR, DNA/RNA extraction, CRISPR/Cas9, cloning, electrophoresis, next-generation sequencing (NGS) library preparation
    • Genomics: RNA-seq, ChIP-seq, single-cell RNA-seq, bisulfite sequencing
    • Proteomics: Western blot, ELISA, mass spectrometry, chromatin immunoprecipitation (ChIP)
    • Cell Biology: Cell culture, transfection, confocal and fluorescence microscopy, immunofluorescence, flow cytometry

Coursework

Course Description Instructor
STAT M254 Statistical Methods in Computational Biology Dr. Jingyi Jessica Li
BIOMATH 210 Optimization Methods in Biology Dr. Kenneth L Lange
BIOMATH M281 Survival Analysis Dr. Gang Li
BIOSTAT 202A Mathematical Statistics Dr. Damla Senturk
BIOSTAT 200A, 200B, 200C Methods in Biostatistics Dr. A. Klomhaus,
Dr. C. M. Crespi,
Dr. Jin Zhou
STAT 100C Linear Models Dr. Nicolas Christou
BIOSTAT 213 Statistical Simulation Dr. Christina Ramirez
MATH 115A, 33A Linear Algebra Dr. Pablo S. Ocal
MATH 131A Real Analysis Dr. Konstantinos Varvarezos
MATH 170E, 170S Probability Theory and Statistics Dr. Zhaoyu Zhang, Dr. Jona Lelmi
BIOSTAT 203A, 203B Data Management, Statistical Computing
Data Science by R
Dr. Grace Kim,
Dr. Hua Zhou
BIOSTAT 216 Mathematical Methods for Biostatistics Dr. Hua Zhou
BIOSTAT 231 Statistical Power and Sample Size Methods Dr. C. M. Crespi
BIOSTAT M236 Longitudinal Data Dr. Robert Weiss
Infinite Theory, Calculus, and Partial Differential Equations
Discrete Mathematics
Python and Computational Thinking
DS BMED 208 Recent Research in Machine Learning in Medicine Dr. Jason Ernst
Bioinformatics
Biochemistry, Organic Chemistry, General Chemistry
Genetics, Human Genetics, Genetic Engineering
Molecular Biology, Cell Biology, Developmental Biology
Anatomy and Physiology, Neurology
Immunology, Microbiology
Ecology, Zoology, Botany, Evolutionary Biology
PUB HLT 200A, B Epidemiology, Public Health Policy, Community & Environmental Health Sciences